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Abstract

This paper addresses the second Lévêque problem with uniform wall heat flux adhering to the original two-dimen-

sional energy conservation equation with variable coefficients in cylindrical coordinates. The semi-analytic procedure to

be proposed combines the transversal method of lines (TMOL) with the Fröbenius version of the power series method.

The hybrid solution that emerges from this combination holds unique features that distinguish it from the traditional

solution methods. In principle, due to the presence of a two-point backward formulation, the approximate analytic

solution is considered first-order accurate. However, using as guidance the computed local convection coefficient at

various transversal lines, it is demonstrated that the approximate analytic TMOL/Fröbenius solution is better than

first-order accurate.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The incipient thermal development of fully estab-

lished laminar flows with viscous fluids when moving

inside round tubes has been recognized as the Lévêque

problem in the literature on convective heat transfer

(Shah and London [1], Gnielinski [2] and Hewitt [3]).

As a collation, the complete thermal development of

fully established laminar flows with viscous fluids in

round tubes is named the Graetz/Nusselt problem [1–
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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3]. Back in 1928, Lévêque [4] conceived an elegant,

closed-form solution for the temperature distribution

for the case of a hot fluid flowing in a round tube with

a fully developed laminar velocity and prescribed wall

temperature (a Dirichlet boundary condition). Lévêque

exploited the fluid physics in depth by inferring that

the hydrodynamic laminar boundary layer flow domi-

nated the core flow in the immediate entrance of the

temperature development region. Lévêque�s idea had
its foundation on two main assumptions: (a) a geometric

assumption that replaced the round tube with a ‘‘flat

plate passage’’ and (b) a hydrodynamic assumption in

which the fluid velocity varied linearly with the trans-

verse coordinate for short distances from x = 0. Conse-

quently, the thermal boundary layer and the related
ed.
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Nomenclature

cp specific isochoric heat capacity

D tube diameter

h local convection coefficient

k thermal conductivity

Nu local Nusselt number, hD/k

qw wall heat flux

r radial coordinate

R tube radius

Re Reynolds number, q�uD=l
Pr Prandtl number, lcp/k
T temperature

u axial velocity

�u mean of u

x axial coordinate

X dimensionless x, x/RRePr

Greek symbols

g dimensionless r, r/R

/ dimensionless T, (T � Te)
�
[(qwR)/k]

l viscosity

q density

Subscripts

b mean bulk

e entrance

w wall
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heat penetration in the viscous fluid were restricted to a

thin shell of fluid adjacent to the tube wall, but near the

entrance.

From a strict mathematical standpoint, what Lévê-

que did was to rescale the variable coefficient caused

by the parabolic velocity profile in the two-dimensional

energy equation expressed in cylindrical coordinates.

Thereafter, with an appended Couette-type linear velo-

city, he solved the simplified two-dimensional energy

equation in rectangular coordinates by means of the

similarity transformation technique. As remarked by

Kevorkian [5], Lévêque provided a singular perturbation

solution of the two-dimensional energy equation in

cylindrical coordinates near the singularity at the early

beginning of the heat exchange region.

The natural extension of the Lévêque problem per-

tains to the replacement of an isothermal-walled tube

(a Dirichlet boundary condition) by an isoflux-walled

tube (a Neumann boundary condition) [1]. This gave rise

to the so-called second Lévêque problem, which was

treated by Bird et al. [6] many years later resorting to

a variant of the singular perturbation solution. The pres-

ent paper addresses the second Lévêque problem treated

in [6], but from a radically different perspective focusing

on mathematical concepts solely. In actuality, the appli-

cable two-dimensional energy equation in cylindrical

coordinates is employed here without making any a pri-

ori physical assumptions about the shape of the velocity

profile and the duct configuration, like Lévêque did. In

this regard, a hybrid computational procedure known

as the transversal method of lines (TMOL) is envisioned

as capable of transforming the 2-D partial differential

energy equation with variable coefficients into an adjoint

ordinary differential energy equation with identical

variable coefficients. Due to the presence of variable

coefficients and a regular singular point, the ordinary

differential energy equation is solved with the power ser-

ies method, in particular the Fröbenius method. In com-
pliance with a tight convergence criterion imposed, a

computer-extended Fröbenius series was used to gener-

ate a succession of semi-analytical radial temperature

profiles at fixed axial stations T(Dx, r) close to the origin
x! 0.
Arguably, when round tubes are heated by uniform

heat flux, the wall temperature Tw = T(Dx,R) and not
the local convection coefficient h at Dx, is the ultimate
target quantity that needs to be determined for purposes

of thermal engineering design. Thus, the goodness of the

wall temperatures Tw is discussed at length in the last

section of the paper dedicated to the presentation of

results. In synthesis, the findings of this paper provided

an alternate prediction method for solving the second

Graetz/Nusselt problem in round tubes with uniform

isoflux walls with a reasonable margin of error. Liter-

ally, the present method turns out to be very simple

and its implementation is straightforward.
2. Mathematical formulation

Consider the heating of a viscous Newtonian fluid

flowing laminarly through a round tube with a uniform

heat flux, wherein at the entrance of a heat exchange re-

gion x = 0 the velocity is fully established and the tem-

perature is uniform. For a constant-property fluid, the

growth of the thermal boundary layer is described by

the dimensionless two-dimensional energy equation in

cylindrical coordinates

ð1� g2Þ o/
oX

¼ o2/
og2

þ 1
g
o/
og

ð1Þ

and subject to the set of boundary conditions

/ ¼ 0; X ¼ 0 ð2aÞ

o/
og

¼ 0; g ¼ 0 ð2bÞ
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o/
og

¼ 1; g ¼ 1 ð2cÞ

The standard dimensionless variables in the formulation

are / = (T � Te)/[(qwR)/k] for the temperature T, X =

x/RRePr for the axial coordinate x and g = r/R for the
radial coordinate r.

2.1. Thermal parameters of interest

Once the dimensionless temperature field /(X,g) is
determined, the mean bulk temperature is obtained from

the integral

/bðX Þ ¼ 4
Z 1

0

/ðX ; gÞð1� g2Þgdg ð3Þ

However, whenever uniform heating is applied at a tube

wall, fluid physics dictates that the variation the mean

bulk temperature can be established by a simple energy

balance (see Appendix A). The end product is the mean

bulk temperature rising linearly with the axial coordi-

nate as follows

/bðX Þ ¼ 4X ð4Þ

In the traditional analysis of convection heat trans-

fer, the key unknown is the local convection coefficient

h ¼ qw
T w � T b

ð5aÞ

This ratio is usually channeled through the local Nusselt

number Nu:

Nu ¼ hD
k

¼ 2

/w � /b
ð5bÞ

where /w = /(X, 1) denotes the dimensionless wall tube
temperature.
3. Semi-analytic solution

3.1. The transversal method of lines (TMOL)

We apply first a hybrid computational procedure,

such as the transversal method of lines (TMOL), also

known as Rothe method in the mathematical literature

(Rothe [7]). Accordingly, the first-order axial derivative

in Eq. (1) is replaced by a backward finite-difference for-

mulation at a station DX measured from the entrance
X = 0, whereas the first- and second-order radial deriva-

tives remain continuous. Then, insertion of the entrance

boundary condition of Eq. (2a) meaning null /, yields
the adjoint differential-difference energy equation

d2/
dg2

þ 1
g
d/
dg

� 1

DX
ð1� g2Þ/ ¼ 0 ð6Þ

The domain of g is [0,1] paired with the first transversal
line placed at DX. In Eq. (6), the embedded parameter
DX specifies an axial stretching interval. Further, the
corresponding radial boundary conditions acting at the

transversal line DX are rewritten as

d/
dg

¼ 0; g ¼ 0 ð7aÞ

d/
dg

¼ 1; g ¼ 1 ð7bÞ

Fundamentally, the validity of the above boundary

value problem, recounted by Eqs. (6) and (7) is limited

to the vicinity of the origin, i.e., for X! 0, because
the backward finite-difference formulation participating

in Eq. (6) has an error of order DX (Bender and Orszag
[8]). In principle, the solution of the boundary value

problem is first-order accurate. This issue will be re-

visited later.

3.2. Fröbenius method

Owing that Eq. (6) possesses variable coefficients and

a regular singular point at g = 0, an acceptable analytical
solution is the Fröbenius method, a variant of the power

series method [8]. Correspondingly, we seek a power ser-

ies solution of the form

/ðg; sÞ ¼ gs
X1
k¼0

Akg
k ð8Þ

where the center of the power series is g = 0, A05 0 and
s is an arbitrary exponent. Upon introducing Eq. (8) into

Eq. (6) the differential-difference equation is satisfied

when all the coefficients of the linear independent terms

vanish independently. The vanishing of the lower term

coefficient supplies the indicial equation, whose solution

delivers a repeated indicial exponent s = 0. Therefore,

the general solution of Eq. (6) at a fixed transversal line

DX may be expressed as follows

/ðDX ; gÞ ¼
X1
k¼0

ðAk þ Bk ln gÞgk ð9Þ

where the coefficients Ak and Bk satisfy the recurrence

relations

A2kþ2 ¼
1

DX
Ak � A2k�2
ð2k þ 2Þ2

" #
; k P 1 ð10aÞ

B2kþ2 ¼ 0; k ¼ 0; 1; 2 . . . ð10bÞ

To obtain the particular solution of Eq. (6), the undeter-

mined coefficients Ak and Bk when articulated with the

radial boundary conditions of Eq. (7a) and (7b), leads

to the pair of relations:

X1
k¼1

kAk ¼ 1 ð11aÞ



A. Campo, C.H. Amon / International Journal of Heat and Mass Transfer 48 (2005) 2110–2116 2113
and

Bk ¼ 0; k ¼ 0; 1; 2; . . . ð11bÞ

Upon specifying a stringent convergence criterion, for

instance

A2kg2k

A0

� �
< 10�6 ð12Þ

numerous terms have to be included in the computer-

extended Fröbenius series of Eq. (9) to achieve the

desired accuracy.
4. Discussion of results

A collection of approximate temperature profiles /
(DX,g) of semi-analytical structure in the g-domain
[0,1] has been obtained by evaluating the computer-

extended Fröbenius series of Eq. (9) at various axial

stations DX with a computer code. Abiding by the above
convergence criterion, it was found that for small

DX! 0 the inclusion of an additional term in the com-
puter-extended Fröbenius series does not affect the value

of the dependent variable /(DX,g) up to eight significant
digits. The truncation process for the Fröbenius power

series is explained in Table 1 in abridged form. Herein,

it may be seen that starting at DX = 0.0001 with 162
terms retained, the number of terms diminishes to 11

at DX = 0.1 passing through 59 at an intermediate
DX = 0.001. In addition, it was also found that the num-
Table 1

Number of terms retained in the computer-extended Fröbenius

series of Eq. (9)

DX Number of terms

0.0001 162

0.0002 124

0.0004 88

0.0006 75

0.0008 66

0.001 59

0.002 43

0.004 32

0.006 27

0.008 24

0.01 21

0.02 17

0.04 14

0.06 12

0.08 11

0.1 11

0.2 9

0.4 8

0.6 6

0.8 6

1 6
ber of terms decreases gently as the interval size DX gets
bigger. The behavior of the Fröbenius series responds

directly to the dimension of the embedded stretching

parameter DX in Eq. (6). In all likelihood, this behavior
is consistent with the Graetz/Nusselt series solution of

the two-dimensional energy equation (1). The Graetz/

Nusselt series converges regularly for large X and di-

verges severely for short X (Kays and Crawford [9]).

To assess the goodness of the simple computational

procedure that articulates TMOL and the powerful

Fröbenius method, it is important to compare the wall

temperature results at pre-specified stations DX against
those wall temperatures evaluated from the classic solu-

tions. Among the classic solutions, one is the Lévêque

solution as computed by Bird et al. [5] and the other is

the Graetz/Nusselt solution recomputed by Shah [10]

almost exactly and reproduced in [1].

Of relative interest, it should be mentioned that the

second Lévêque problem is a particularization of the sec-

ond Graetz/Nusselt problem. The latter refers to the

complete thermal development of a viscous fluid flowing

laminarly through a round tube with prescribed wall

heat flux. The first analytic solutions to the second

Graetz/Nusselt problem are attributed to Eagle and

Ferguson [11] and Seigel et al. [12].

As a preamble for the discussion, it is worth remem-

bering that the Lévêque solution for prescribed wall

temperature is normally acceptable for an upper portion

of the thermal entrance region of circular tubes that con-

form to the reduced interval 0 < x/R 6 0.01RePr [1,2].

Incidentally, in the context of the Lévêque solution this

inequality may be viewed as the creation of a dimension-

less thermal entrance length for tubes heated/cooled with

prescribed wall temperature. In practice, this deep re-

gion is of significance for short tubes carrying highly vis-

cous fluids in compact heat exchanger tubes [1,2].

Unfortunately, an equivalent inequality for x/R related

to uniform wall heat flux in the second Lévêque prob-

lem, was not explicitly given in [6]. Nevertheless, the en-

tries in the fourth column of Table 2 may be used for

this specific purpose. This avenue suggests that if a rela-

tive error of �15% is adopted as the deciding criterion in
the context of the first Lévêque problem, the dimension-

less thermal entrance length for the second Lévêque

problem should be established around X = 0.01.

From a fundamental framework for uniform wall

heating in round tubes, the dimensionless wall tempera-

ture /w = /(X, 1) and not the local Nusselt number Nu
should be considered as the ultimate target quantity in

any comparative study. The wall temperature is a local

quantity as opposed to the local Nussel number, which

embraces one global and two local thermal quantities

(see Eq. (5)). Correspondingly, the wall temperature

/w = /(DX, 1) from our TMOL-Fröbenius solution will
be contrasted in Table 2 against the wall temperature /w
delivered by the two classic solutions, one the Lévêque



Table 2

Comparison of the wall temperature distribution /w(DX)

DX Graetz/Nusselt

solution [1,10]

Lévêque

solution [6]

% Error TMOL-Fröbenius

solution (present work)

% Error

0.001 0.13048 0.12191 �6.57 0.11668 �10.58
0.002 0.16752 0.15360 �8.31 0.14989 �10.52
0.004 0.21627 0.19353 �10.51 0.19373 �10.42
0.006 0.25200 0.22153 �12.09 0.22594 �10.34
0.008 0.28138 0.24383 �13.34 0.25251 �10.26
0.01 0.30689 0.26266 �14.41 0.26564 �10.18
0.02 0.40530 0.33093 �18.35 0.36555 �9.81
0.04 0.54473 0.41694 �23.46 0.49588 �8.97
0.06 0.65531 0.47728 �27.17 0.60277 �8.02
0.08 0.75278 0.52531 �30.22 0.69981 �7.04
0.1 0.84308 0.56588 �32.88 0.79164 �6.10
0.2 1.25716 0.71300 �43.28 1.22021 �2.94
0.4 2.05833 0.89827 �56.36 2.03777 �1.00

Fig. 1. Comparison of the local Nusselt number in the thermal

entrance region.
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solution [6] and the other the Graetz/Nusselt solution

[1,10]. It may be observed in the table that the relative

errors associated with the Lévêque solution begin with

�6.57% at the station DX = 0.001 (nearly X = 0) and
grow monotonically with DX as the flow progresses
downstream in the tube. Moving down to the station

DX = 0.01, the relative error increases to �14.41%. The
ascending error trend is consistent with the hypothesis

of the Lévêque�s model simply because the assumptions
of linear velocity and ‘‘flat plate passage’’ valid near the

tube wall in the vicinity of X = 0 breaks down when a

threshold value of DX is exceeded.
On the other hand, our /w results via the TMOL-

Fröbenius solution, exhibit intrinsic relative errors that

start with a value of �10.58% at DX = 0.001 (practically
X = 0) and at a distant D X = 0.01 the relative error is

�10.18%. Despite that the relative errors decrease
slightly with DX, it may be confirmed that the error band
remains stable between DX = 0.001 and 0.01. It is curi-
ous that the relative errors produced by the two tech-

niques level off at the station DX = 0.004. Beyond
DX = 0.01, the /w error descends markedly as the vis-
cous flow continues to move into the far downstream

region.

The thermal entrance region for round tubes with

isoflux heating has been tacitly established at DX = 0.1
[1,10]. For obvious reasons, the end station of the ther-

mal entrance region deserves special attention. At this

borderline location DX = 0.1, the /w error delivered by
our TMOL-Fröbenius solution diminishes to �6.1%.
In fact, this is indeed a surprising finding. As a point

of reference, at this same location DX = 0.1 the error
for /w supplied by the Lévêque solution grows enor-
mously to �32.88%.
We also included in Table 2, the computed wall tem-

peratures /w for two additional stations DX = 0.2 and
0.4 that lie well outside the confines of the thermal en-

trance region. It is interesting to see that at these two
far-away stations, the /w errors by the TMOL-Fröbe-
nius solution continue to diminish steadily with incre-

ments in DX, reaching values of �2.94% at DX = 0.2
and �1.00% at DX = 0.4. Also, the correctness of this
behavior at stations far away from X = 0 is an astonish-

ing discovery. As opposed to this, the /w errors by the
Lévêque solution keep increasing steadily with incre-

ments in DX, reaching values of �43.28% at DX = 0.2
and �56.36% at DX = 0.4.
For completeness, results for the local Nusselt num-

ber Nu are also reported in this work. It may be seen

in Fig. 1 that the asymptotic local Nusselt number

sub-distribution Nux!0 produced by approximate

TMOL/Fröbenius method slightly overpredicts the exact

local Nusselt number distribution Nu coming from the

exact Graetz series [1,10]. A peculiarity of the two curves

is that they are parallel for 0.001 < DX < 0.1. Mean-
while, the asymptotic local Nusselt number sub-distribu-

tion Nux!0 that emerged from the approximate Lévêque

solution coincides with the exact local Nusselt number
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distribution Nu up to DX = 0.01. Thereafter, the Nu
associated with the Lévêque solution curves up with

DX and deviates from the exact Nu.
The success of TMOL/Fröbenius method in predict-

ing wall tube temperatures with relative precision may

be explained as follows. The wall temperature curve con-

sists of two parts, a first concave curved line and a second

positive-sloped straight line. In the first part, the wall

temperature curves up from 0 to 0.1 in the region of ther-

mal development. In this particular region, the errors of

the backward formulation for the axial temperature

derivative being proportional to DX stay within a 10%
on a consistent basis. At the threshold station DX = 0.1,
the wall temperature turns into a positive-sloped straight

line possessing an error of 6.1%. Thereafter, the errors

keep decreasing gradually until reaching 1% at

DX = 0.4. Based on this amazing tendency, it may be in-
ferred that the errors diminish because the slope of the

backward formulation approaches the slope of the in-

clined positive-sloped straight line (see Appendix B).
5. Conclusions

The accuracy delivered by the TMOL/Fröbenius

method for the study of isoflux heating of round tubes

carrying laminar fluid flows is an irrefutable proof of

its superiority with respect to the Lévêque method

implemented by Bird et al. [6], who followed the foot-

steps of Lévêque [4]. The TMOL/Fröbenius method

can be utilized with confidence for calculating wall tube

temperatures not only in the reduced thermally develop-

ing region in the context of Lévêque, but in the entire

thermal developing region in the general sense of Gra-

etz/Nusselt. Qualitatively speaking, the Lévêque method

can be safely employed inside the abridged thermal

developing region up to DX = 0.01. In contrast, the
TMOL/Fröbenius method applies to the whole thermal

developing region and beyond, i.e., for any value of

DX, smaller than 0.01 or greater than 0.01. This high
level of quality is in fact a pleasant discovery that the

outcome of this paper has aptly unveiled.
Appendix A. Determination of the mean bulk temperature

in a TMOL environment

The differential-difference equation (6) may be re-

written as

1

g
d

dg
g
d/
dg

� �
� 1

DX
ð1� g2Þ/ ¼ 0 ðA:1Þ

Multiplying this equation by gdg, it becomes

d g
d/
dg

� �
� 1

DX
ð1� g2Þ/gdg ¼ 0 ðA:2Þ
Integration of this equation between the limits 0 and 1

givesZ 1

0

d g
d/
dg

� �
� 1

DX

Z 1

0

ð1� g2Þ/gdg ¼ 0 ðA:3Þ

Next, performing the integration results in

g
d/
dg

� �
g¼1

� g
d/
dg

� �
g¼0

� 1

4DX
4

Z 1

0

ð1� g2Þ/gdg

� 	

¼ 0 ðA:4Þ

In concordance with the boundary conditions of Eq.

(7a) and (7b), the first term becomes one while the sec-

ond term vanishes. On the other hand, the expression

in brackets in the third term is recognized as the mean

bulk temperature /b as given by Eq. (3). This combina-
tion of factors yields

1� 0� 1

4DX
ð/bÞ ¼ 0 ðA:5Þ

This paves the way for the following linear variation

/b ¼ 4DX ðA:6Þ

which is represented by Eq. (4).
Appendix B. Implications of the TMOL-Fröbenius

method

The formal definition of the backward finite-differ-

ence formula is [8]:

f 0ðx0Þ ¼
f ðx0Þ � f ðx0 � DxÞ

Dx
� Dx
2
f 00ðnÞ ðB:1Þ

For small values of Dx, the difference quotient can be
used to approximate f 0(x0) with an error bounded by

MDx/2, if M is a bounded quantity for x 2 [a,b].
An important consideration in numerical differentia-

tion is the effect of the round-off error. The truncation

portion of the error in a numerical differentiation tech-

nique will decrease if the interval Dx is reduced, but at
the expense of increased round-off portion of the error.

In practice, it is difficult to separate both errors and com-

pute an optimal interval DXopt to be used in approxima-
ting the first derivative, since we have no knowledge of

the second derivative of the function f00(n) for x 2 [a,b].
To complicate things, the interval [a,b] is not kept con-

stant in the present computational technique.

The issue to be addressed here is concerned with the

estimation of the maximum interval DXmax in Eq. (8),
which provides temperature results of comparable qual-

ity to those given by the Lévêque solution. An intituitive

discussion will revolve around the approximation of the

slope of the wall temperature curve by a secant in the
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vicinity of X tending to zero. This is done in conformity

with the definition of the backward formula in Eq. (B.1)

on a global basis.
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